技术支持

轮胎硫化机系统工作原理

来源:轮胎硫化机系统工作原理 编辑:轮胎硫化机系统工作原理 时间:2015年01月24日 浏览:
分享到:
轮胎硫化机系统工作原理
汽车轮胎的硫化从50年代起推广应用了胶囊定型硫化机。硫化室内径在65"以下的轮胎,即全部乘用车轮胎和轻型、中型卡车轮胎的硫化基本上都采用双模定型硫化机。65"[1]以上的则采用单模定型硫化机或硫化罐。 双模定型硫化机首先普遍应用的是机械式硫化机,采用曲柄齿轮—连杆(或称四连杆)结构,机构原理简单。在合模瞬间就加上合模力,以较小的电机功率可获得较大的合模力。合模以后电机不再工作,而合模力可始终保持到重新开模。目前世界上所采用的机械式硫化机虽生产厂家不同、规格型号各异,而且经过多年不断改进,但基本结构都一样,也都没有变化。
2发展趋势
在机械式硫化推广应用的同时,也出现了液压式硫化机。但由于开始时液压式硫化机对机械式硫化机的优越性不很明显,而且当时液压技术还不很成熟,轮胎厂对液压式硫化机的维修保养还不很适应,因此在一段时间内液压式硫化机没有象机械式硫化机那样得到普遍推广。但随着汽车工业和轮胎工业的不断发展,对轮胎的均匀性提出了越来越高的要求,也对硫化机的工作精度提出了越来越高的要求,液压式硫化机的优越性就充分地显示出来了。同时液压技术也日趋成熟,维修保养也不再成为大问题。所以现在世界上主要轮胎公司已逐步采用液压式硫化机来代替传统的机械式硫化机。他们在建设新厂或对老厂进行技术改造时,已基本上采用液压式硫化机。液压式硫化机替代机械式硫化机已成为无可置疑的发展趋势。
3原理流程
轮胎硫化机系统工作原理: 电机带动齿轮泵和高压齿泵转动(泵的旋转方向应与箭头方向一致) , 按启动按钮后 . 滤油器 → 齿轮泵 → 溢流阀 → 单向阀 → 油缸此时 , 液压油经使柱滤油器 → 齿轮泵 → 远程调压阀 → 单向阀 → 油缸塞快速上升 , 流量减少 , 低压溢流阀和远程调压阀溢流系统压力由电接点压力表的黑针显示 , 电接点压力表的红针调到保压压力 14.5Mpa, 另一只绿针调到 13Mpa, 当表上黑针和红针重合时 , 压力表发出讯号 , 使电机停止工作 , 即为保压。注:硫化时间需预先调定 DSJ-909 , 保压时间到 , 自动报警蜂鸣器响 , 此时拉回液压站上的控制阀手柄 , 热板快速下降 , 即开模。一个工作程序就此完成。由于合模硫化过程中可能要出现降压现象 , 黑针退到与绿针重合(不保压) , 此时电机重新运转工作 , 使黑针又与红针重合 , 即自动补压 , 自动补压不影响硫化时间。
4结构特点
机械式硫化机有其结构特点,但这种结构也同时带来了一些固有的弱点
硫化机,采用电机带动蜗轮,蜗轮减速,再直接带动大、小齿轮传动,具有结构紧凑的特点。
抓胎装置在转进、转出的过程中,要求运动平衡和高精度定位,采用马氏间歇机构及对中装置的设计解决了硫化机在往得运动中保持高精度的问题。脱模轨迹的优化设计由线接触到面接触的过度,减少了脱模水缸的脱模力。
卸胎装置的设计,满足了子年轮胎的生产工艺要求,为了保证胶囊在轮胎胎胚中均匀伸展,提高往复精度,中凡机构滑动部分的密封件采用双层密封。并设计了强制对中装置,为保证机械式硫化机的往复精度起到了重要作用。
硫化机很多重要零部件采用定点厂家生产的优质材料制造而成。如密封件、特别是中心机构密封件,是由神钢设计人员设计,日本专业生产厂家制造。环座是硫化机的关键件,为了减少应力和腐蚀,提高环座的寿命,对环座的含碳量进行了严格的控制。
为保证设备的机械性能,我们按神钢标准选择材料,迄今为止,关键的配套件仍从日本进口,国内配套件采用由我公司指导制造的方法,并且可根据用户的工艺要求,提供先进的配置,使设备实现轮胎硫化全过程的自动化及高精度的控制。
机械式硫化机的合模力是依靠各受力构件的弹性变形而获得的。在合模并加上合模力时,上横梁两端向下挠曲,底座两端向上挠曲,连杆被拉长且其两端向外挠曲,曲柄齿轮及连杆下端向外偏移。因此,即使是全新的硫化机,制造质量良好,没有磨损,在合模时这些挠曲变形都一定发生。硫化工位的轴线将偏离理论的垂直位置而被扭弯,而且这轴线从理论垂直位置到被扭弯位置每开合模一次就重复发生一次。也就是说,这轴线在开合模瞬间是带有角转运动的。 由于受力构件的挠曲变形,模具受到的合模力沿圆周方向不是均匀分布的,终是外侧的受力大于中间。有的硫化机制造厂针对这一问题采取了一些补救措施,例如在未合模时使曲柄齿轮下端预先内倾(曲柄齿轮轴向外下倾一微小角度),以及在上横梁上采用楔形填片等,这对某一特定规格的轮胎并在硫化机没有磨损时起到一定的补偿作用,但在变换轮胎规格时或硫化机零件有磨损时,这种补偿作用就大大降低。 双模硫化机结构上是左右对称的,但由于制造上的误差,不可能做到绝对对称。硫化机制造厂采取各种措施以保证零件的对称性,例如连杆成对加工,墙板成对加工,尽量采用数控机床等,但对上横梁、底座、曲柄齿轮、传动轴和传动齿轮等,很难做到绝对对称。由于存在这对称性误差问题,为了保证机器灵活运转,各运动零件的配合一般都采用较松的配合公差。如连杆孔与上横梁轴及曲柄销的配合为(E8/e8),曲柄齿轮轴与底座孔的配合为(E8/e8),上横梁轴与滚轮的配合为(F8/e8),滚轮与墙板导槽的配合为(H9/f8),上横梁端面、底座端面与连杆平面之间的累积间隙为1.15~1.5mm等。这不对称性和这些公差的存在进一步对硫化机的合模精度特别是重复精度造成不利影响。 机械式硫化机的结构还决定了上横梁销轴施加于连杆上部铜套的力、曲柄齿轮轴施加于连杆下部铜套的力,和曲柄销施加于连杆下部铜套的力都是不均匀的,见图1。而且这几个连接部分都在重负荷下转动,这不可避免地造成这些铜套的不均匀的和较严重的磨损。而铜套的磨损将进一步降低硫化机的合模精度。为了保持硫化机一定的合模精度,这些铜套的磨损程度必须经常检查并及时更换。
此外,机械式硫化机的合模力是在曲柄销到达下死点瞬间由各受力构件的弹性变形量所决定的。而温度变化将使受力构件尺寸发生变化,合模力也将随之而变化。因此机械式硫化机的合模力对温度是比较敏感的。在投入使用前或停机一段时间重新开动时一定要预热。生产过程中环境温度或工作温度的波动都将造成合模力的波动。

所有这些机械式硫化机所固有的弱点在液压式硫化机上都较彻底地解决了。现以日本三菱重工生产的PC-X液压硫化机(PC-X中的PC代表乘用车胎,X代表液压硫化机系列)。
1 总体结构 |
(l)机体为固定的框架,结构紧凑,刚性良好,安装运输方便。
(2)开合模时上模部分只有垂直上下运动,靠前后和左右滚轮在导轨上滚动。滚轮带有偏心套,对中度可精确调整。滚轮与导轨之间基本上没有间隙,可保持很高的对中精度和重复精度。
(3)虽然液压式硫化机也是双模腔的,但从受力角度看,只是两台单模硫化机连结在一起。合模力依靠液压缸加在模具中心的力和二侧框架对称的弹性伸长而获得,模具圆周方向受力均匀5。在整个操作过程中硫化工位轴线能始终保持理论垂直,没有角转运动。
(4)由于合模力决定于合模油缸油压,不受环境温度或工作温度影响,可保持恒定的合模力。
(5)运动零件动作时其滑动表面或滚动表面没有法向负荷,磨损极小,可保持长时间的操作精度。
(6)由于改进了机械结构和隔热层的设计,辐射热损耗比机械式硫化机降低30~50%。
0液压硫化机液压原理的设计
随着我国交通运输事业的迅速发展,高速公路不断铺设,这就对对汽车轮胎的均匀性提出了越来越高的要求,因此对硫化机的工作精度要求也随之提高。
目前我国轮胎行业广泛应用的是50年代发展起来的机械式硫化机,由于本身结构的原因,机械式硫化机存在如下问题:
1. 上下热板的平行度、同轴度、机械手卡爪圆度和对下热板内孔的同轴度等精度等级低,特别是重复精度低;
2. 连杆、曲柄齿轮等主要受力件上的运动副,是由铜套组成的滑动轴承,易磨损,对精度影响较大。
3. 上下模受到的合模力不均匀,对双模轮胎定型硫化机而言,两侧的受力,大于两内侧的受力;
4. 合模力是在曲柄销到达下死点瞬间由各受力构件弹性变形量所决定的,而温度变化使受力构件尺寸发生变化,合模力也随之发生变化,因此,生产过程中温度的波动将造成合模力的波动。
由于机械式轮胎硫化机存在的不可克服的弱点,已不能满足由于高速公路的发展,对汽车轮胎质量要求的日益提高。因而世界上主要轮胎公司已逐步采用液压式硫化机代替传统的机械式硫化机,这是因为液压式硫化机结构上具有如下特点:
1. 机体为固定的框架式,结构紧凑,刚性良好。虽然液压式硫化机也是双模腔,但从受力角度看,只是两台单模硫化机连结在一起,在合模力作用下,机架微小变形是以模具中心线对称的;
2. 开合模时,上模部分仅作垂直上下运动,可保持很高的对中精度和重复精度;另一方面,对保持活洛模的精度也较为有利;
3. 上下合模力均匀,不受工作温度影响;
4. 整机重量减轻,仅为机械式硫化机的1/3;
5. 由于取消了全部蜗轮减速器、大小齿轮、曲柄齿轮和连杆等运动部件和易损件,使维护保养工作量减少。
一、液压式轮胎定型硫化机的工作程序
液压硫化机工作时,升降油缸带动上模沿导向柱上升,在机架内形成空腔,装胎装置转进装胎,中心机构的上下环上升,胎胚定位,装胎装置卸胎后退出,升降油缸带动上模沿导向柱下降合模,胎胚定型后合模到位,在模座下面的4个短行程加力油缸作用下,产生要求的合模力。轮胎硫化结束后,加力油缸卸压,升降油缸带动上模上升,轮胎脱出上模,上模上升到位后,中心机构囊筒上升,轮胎脱下模,中心机构的上下环下降,胶囊收入囊筒中,同时,卸胎机构转进,囊筒下降,卸胎机构将轮胎翻转而出,送至后充气冷却。
从各国实践经验看,液压式硫化机在升降驱动装置、活络模装置、加力装置、中心机构、囊筒升降装置上采用液压驱动。可以说除卸胎装置和装胎装置采用气动控制外,其它均采用液压驱动。因此,作为动力源的液压系统设计十分重要。
二、硫化机液压动力源的设计
1140液压式轮胎硫化机硫化胎圈直径范围12”~18”,最大合模力为1360KN。合模力的获得完全来源于油压。一般采用低压力、较快速度、较长行程的油缸控制开合模。合模后,用高压、短行程的油缸使上下模受到合模力。由于负载和速度变化较大,要求相应的液压系统能提供较大范围变化的压力和流量。
液压系统各缸工作时所需流量计算如下:
缸的几何流量Q=
式中:
Q-几何流量 l/min
A-有效面积
S-缸的行程 m
t-运行时间s
已知各缸行程,运动时间及有效面积,依程序图各缸运动顺序,分别计算各时间段流量如下表。

由图二可见系统流量变化较大,在充分考虑了液压系统工作的可靠性、安全性及实用性情况下,采用双联叶片泵作为动力源,能完全满足流量范围变化大的要求,另一方面该泵,具有液压冲击小、压力平稳、噪声小、工作性能较好的优点。
由于采用双联叶片泵,须配有溢流阀-卸荷阀组,以满足不同流量时的要求;同时,在工作过程中,当卸胎装置、装胎装置工作时,所有液压缸均处于不工作状态,如果采取停止泵的运转的方式,会造成泵频繁启动,为避免这一现象,考虑采用电控溢流阀,通过电气控制,使溢流阀平时起安全阀作用,电磁铁带电时处于卸荷状态。
液压源设计成功与否,不仅仅要正确选择液压泵以解决动力源问题,而且需全盘考虑配置,才能达到性能要求。因此在液压站的设计中,泵与电机的联接采用弹性联轴器,确保同轴度与垂直度的同时具有良好的减振性;在泵和电机的安装上采用立式安装,不仅节省安装空间,且油泵浸于油面以下,油泵自吸良好;主油路中液压油的压力由主溢流阀的工作状态控制,为了保证油液的清洁度,设置精密过滤器(10μm),保证比例系统正常工作。
三、硫化机的保压和泄压
硫化机在工作循环中,轮胎硫化需长时间保压(主要是加力缸和中心缸的保压),以确保轮胎质量。保压性能的好坏,直接影响到轮胎硫化的质量,在设计时,拟定了两种保压方式。
1. 用液控单向阀保压。如图三所示。在油缸的进油路上串联一个液控单向阀,利用单向阀锥形阀座的密封性来实现保压。它在200Mpa压力下,10min内压力降不超过2Mpa。
2. 用蓄能器保压。如图四所示。蓄能器与主缸相通,补偿系统漏油,并且在蓄能器出口设单向节流阀,其作用是防止换向阀切换时,蓄能器突然泄压而造成冲击。采用蓄能器保压24小时内,压力降不超过1~2bar。
两种方式在理论上均有可取之处。用液控单向阀保压,简单、易于安装。但随着锥阀磨损或油的污染,液压油的泄漏增加,保压性能将降低,此外,这种方法在保压过程中压力降过大,因此可靠性差。而采用蓄能器保压,既能节约功率,又能保证1140液压硫化机保压15min中内压力基本不降。因而,在1140液压硫化机中采用蓄能器保压。
保压时由于主机的弹性变形、油的压缩和管道的膨胀而贮存了一部分能量,故保压后必须逐渐泄压,泄压过快,将引起液压系统剧烈的冲击、振动和噪声,甚至会使管路和阀门破裂。因此,设计中采用适当的泄压方式十分重要。本机中采用延缓换向阀切换时间来达到逐步泄压目的。即采用带阻尼器中位为Y型的电液换向阀。当保压完毕反向回程时,由于阻尼器的作用,换向阀延迟换向,使换向阀在中位停留时主缸上腔泄压后再换向回程。
四、比例技术在液压硫化机中的应用
硫化机在开合模过程中,油缸行程较大。合模时,要求油缸首先快速合模,在接近定型时,为防止因速度过大,造成惯性前冲,油缸需要减速,即慢进,然后到位停止,并且二次定型后,完全合模时,合模缸速度也较小。此外,硫化完毕,上模开启时,为提高效率,应快速开模,在快到达预定位置时,为防止冲击,需要减速到达死点后锁紧。从以上过程可以看出,开合模油缸在往返行程中,速度和加速度都不同。根据此工况,利用传统式的液压控制阀拟定控制合模缸的液压原理图如图五。
利用传统式的液压控制阀,由于只能对液流进行定值控制,而换向阀只起开关作用,组成的液压系统较复杂,同时,大量液压阀的应用,
也降低了系统的可靠性,且系统的动静态特性都较差。
随着液压技术的发展,60年代末出现了比例技术,由于比例控制具有电液伺服系统优良的动、静态特性的优点,且加工制造简单、价格低廉、工作可靠、维护方便。因而,在设计中,首次将比例技术这一先进技术应用到液压系统中,提高了产品的技术含量。
利用比例技术实现开合模过程的控制,其液压原理图如图六。此处仅使用一个比例方向阀便实现了需七个传统液压阀方能实现的功能。这种控制方式实质就是利用比例方向阀的"连续控制",除了能达到液流换向的作用外,还通过控制换向阀的阀芯位置来调节阀口开度来控制流量。因此,它兼有流量控制和方向控制的功能,而传统的换向阀仅起开关的作用。
从成本上而言,单个比例阀价格较高,但由于它能取代多个普通液压阀,且动、静态特性良好,而压力损失较普通阀小,有利于降低系统能耗和温度,因此,利用比例阀有较好的性能价格比。
在1140液压式硫化机的设计中,充分考虑了各工况的要求,以最经济、简洁的控制方式来满足机器的各项性能要求,在液压系统的设计中做到了运行平稳、冲击小、可靠性高。为节省安装时间,在液压阀的安装上没有采用常用的板式联接,而是采用集成式联接,该方法将阀串联叠加,如电气上的集成块,一组即可实现某一功能。另一方面,对一些溢流阀、单向阀采用插装阀,此种阀直接与阀块中相应的孔配合而与叠加阀构成完整的液压系统,叠加阀与插装阀的使用,使液压站结构布置紧凑,管路简化,安装方便。
五、结束语
在实际应用中,液压式硫化机替代机械式硫化机已成为无可置疑的发展趋势。在这种形势下,作为国内硫化机主要生产厂家,大力开展液压硫化机的开发工作,势在必行。目前,桂林橡胶机械厂已完成1140液压硫化机的设计工作,并提交用户使用。
1140液压式轮胎定型硫化机由存胎器、装胎装置、机架、中心机构、升降驱动装置、硫化室、调模装置、锁模装置、卸胎装置、后充气、热工管路系统、空气管路系统、液压管路系统、电气仪表控制系统等部分组成。
技术指标如下:
1.硫化室数目 2个
2.硫化室内径 1140mm
3.加热方式 热板式加热
4.中心机构形式 C型
5.最大合模力 1360KN
6.模具高度范围 190~430 mm
7.胎圈直径范围 12〃~18〃
8.最大生胎高度 370 mm
9.最大生胎外径
活络模 740mm
两半模 810 mm
10.最大内压 2.8Mpa
11.最大热板蒸汽压力 1.6 Mpa
12.最大定型蒸汽压力 0.25 Mpa
13.控制气源压力 0.6 Mpa
14.仪表气源 净化的0.6 Mpa
15.电源 三相AC380V±15%
50HZ±2%
单相AC220V±15%
50HZ±2%
DC 24V
16.负载 约16KW
17.后充气
胎圈直径 12〃~18〃
胎圈宽度调节范围 102~228 mm
充气轮胎外径 432~863 mm
18.重量 约14T
19.外形极限 长X宽X高 约4000X3560X4770
整个硫化工序可分为四大步骤:预热胶囊、装胎、硫化、开模。具体步骤为:    2.1 预热胶囊
硫化机开模到极限→下环向上→下环限位块入→胶囊内通入一次定型蒸汽对胶囊加热→胶囊自动排气→胶囊内再次进一次定型蒸汽,自动反复进行,胶囊内得到脉冲蒸汽,逐步升温→胶囊加温完毕,限位块出,下环向下   2.2 装胎    初始位置:硫化机开模至极限,胶囊收入囊筒,推顶器,球鼻缩回,机械手在顶部缩拢→延时后机械手下降到抓胎位置→机械手伸张抓胎→延时后机械手带生胎上升至极限位置停→硫化机开启自动→机械手转入→机械手下降到装胎位置时停→下环向上→限位块入→胶囊内通入一次定型蒸汽,胶囊舒展进入胎胚内→机械手缩拢→胶囊内一次定型蒸汽切换为保持定型蒸汽→机械手上升到极限→机械手转出。    2.3 硫化    硫化机自动合模→当合模到一定高度时润滑轴承→合模到另一高度时停止润滑并向下模吹风→继续合模到另一高度时停止吹风→胶囊内由保持定型蒸汽切换为一次定型蒸汽→硫化机一次暂停→延时后硫化机重新闭合→当合模到一定高度(定型高度)时胶囊内由一次定型蒸汽切换为二次定型蒸汽进行加压定型→硫化机二次暂停,胶囊内进行定型放气→胶囊内重新充入二次定型蒸汽→硫化机继续合模→硫化机合模到极限位置停止时机台承受合模力,硫化程序开始按PLC设定程序工作,硫化开始→延时后装胎器下降装胎,重复抓胎过程。    2.4 开模     当开始工作,进入硫化过程,硫化结束后向后充气发出翻转信号→胶囊计数→限位块出→下环向下将胶囊拉入囊筒,胶囊脱离轮胎→硫化机开模→当开模至一定高度时推顶器下降→球鼻下降,夹具板张开压在轮胎的下胎圈上→硫化机继续开启,轮胎脱离上模→推顶器上升,轮胎挂在张开的夹具板上,同时脱下模→当硫化继续开模,推顶器继续再次下降,卸胎杆伸出→球鼻上升,夹具板收拢→当球鼻上升至极限后,推顶器上升,轮胎被碰掉在辊道上→卸胎杆退回→硫化机开模到极限停→延时后装胎器又自动下降装胎,重复装胎合模、定型等过程。 3. RIB轮胎硫化的特点     3.1 RIB轮胎硫化机与A型硫化机比较有以下特点:   ①A型硫化机胶囊为球形,上端不固定,这样胶囊在轮胎中定位精度低。RIB硫化机胶囊上端通过上环固定在中心机构上,定型时轮胎与胶囊的对中性较好,稳定性较好。它克服A型硫化机定位精度低的缺陷,更适合于子午胎的硫化。   ②A型硫化机胶囊沿模具自下而上贴紧胎胚运动,因此在胎胚钢圈部位不易夹气,RIB硫化机胶囊下部与A型的夹持形式基本相似,胶囊填满胎胚的运动形式相似,它继承了A型硫化机避免在胎胚钢圈部位夹气的优点。    ③A型硫化机上模的运动轨迹是垂直加平移式,这对提高上下模的对中精度尤其是其重复精度是有利的,同时模具不翻转对提高模具的寿命和精度有利。RIB硫化机的上模运动形式采用垂直加平移式,整个硫化过程中无翻转运动,继承了A型硫化机的这一优点。   ④RIB硫化机的胶囊更换时间比A型硫化机囊筒更换时间短。  ⑤RIB硫化机的胶囊为半翻转,其折叠程度比A型硫化机少,胶囊使用寿命长。    ⑥RIB硫化机用中心机构取代A型硫化机囊筒机构,硫化时硫化介质不进入囊井,取消动力水,同时需充蒸汽的容积减少,这样克服A型能耗高的缺点,节省能源。同时大大减少泄漏点,减少维修量及更利于环境的保护。  ⑦A型硫化机装胎机构装在横梁上随横梁运动,增加了运动造成的偏差,不利于保证装胎机构在装胎位置时与中心机构的对中度及其重复精度。桂林橡机厂在新研制1050RIB硫化机中将装胎机构焊接在墙板上,提高装胎机构与中心机构的同轴度及其重复精度。
(7)由于开合模动作简化,开合模时间缩短30%左右,提高了机器的生产率。
(8)因为没有上模的翻转运动,对保持活络模的精度和延长其使用寿命有利。
(9)由于取消了全部蜗轮减速器、大小齿轮、曲柄齿轮和大连杆等运动件和易损件,维护保养工作量减少。
(10)由于整机重量减轻,且机器在开合模时重心轴线不偏移,机器的基础处理可大大简化。
(11)机器的运动精度提高,可达到:
上下热板同心度≤0.3mmTIR
上下热板平行度≤0.3mm/m
装胎器对下热板的同心度≤0.3mmTIR
装胎器对下热板的平行度≤0.5mm/m 卸胎器对下热板的同心度≤1mmTIR
卸胎器对后充气环的同心度≤1mmTIR
相关阅读: